- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Benzo, Roberto M (2)
-
Kargarandehkordi, Ali (2)
-
Li, Shizhe (2)
-
Phillips, Kristina T (2)
-
Washington, Peter (2)
-
Fan, Chunzhi (1)
-
Jaiswal, Aditi (1)
-
Lin, Kaiying (1)
-
Slade, Christopher (1)
-
Sun, Yinan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The development of digital instruments for mental health monitoring using biosensor data from wearable devices can enable remote, longitudinal, and objective quantitative benchmarks. To survey developments and trends in this field, we conducted a systematic review of artificial intelligence (AI) models using data from wearable biosensors to predict mental health conditions and symptoms. Following PRISMA guidelines, we identified 48 studies using a variety of wearable and smartphone biosensors including heart rate, heart rate variability (HRV), electrodermal activity/galvanic skin response (EDA/GSR), and digital proxies for biosignals such as accelerometry, location, audio, and usage metadata. We observed several technical and methodological challenges across studies in this field, including lack of ecological validity, data heterogeneity, small sample sizes, and battery drainage issues. We outline several corresponding opportunities for advancement in the field of AI-driven biosensing for mental health.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Li, Shizhe; Fan, Chunzhi; Kargarandehkordi, Ali; Sun, Yinan; Slade, Christopher; Jaiswal, Aditi; Benzo, Roberto M; Phillips, Kristina T; Washington, Peter (, AI)Substance use disorders affect 17.3% of Americans. Digital health solutions that use machine learning to detect substance use from wearable biosignal data can eventually pave the way for real-time digital interventions. However, difficulties in addressing severe between-subject data heterogeneity have hampered the adaptation of machine learning approaches for substance use detection, necessitating more robust technological solutions. We tested the utility of personalized machine learning using participant-specific convolutional neural networks (CNNs) enhanced with self-supervised learning (SSL) to detect drug use. In a pilot feasibility study, we collected data from 9 participants using Fitbit Charge 5 devices, supplemented by ecological momentary assessments to collect real-time labels of substance use. We implemented a baseline 1D-CNN model with traditional supervised learning and an experimental SSL-enhanced model to improve individualized feature extraction under limited label conditions. Results: Among the 9 participants, we achieved an average area under the receiver operating characteristic curve score across participants of 0.695 for the supervised CNNs and 0.729 for the SSL models. Strategic selection of an optimal threshold enabled us to optimize either sensitivity or specificity while maintaining reasonable performance for the other metric. Conclusion: These findings suggest that Fitbit data have the potential to enhance substance use monitoring systems. However, the small sample size in this study limits its generalizability to diverse populations, so we call for future research that explores SSL-powered personalization at a larger scale.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
